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Abstract

We obtain the Lipschitz boundedness for a class of fractional multilinear operators IA,mΩ,α with

rough kernels Ω ∈ Ls(Sn−1), s > n/(n − α) on the local generalized Morrey spaces LM
{x0}
p,ϕ ,

generalized Morrey spaces Mp,ϕ and vanishing generalized Morrey spaces VMp,ϕ, where the
functions A belong to homogeneous Lipschitz space Λ̇β , 0 < β < 1. We find the sufficient
conditions on the pair (ϕ1, ϕ2) which ensures the boundedness of the operators IA,mΩ,α from

LM
{x0}
p,ϕ1 to LM

{x0}
q,ϕ2 , from Mp,ϕ1 to Mq,ϕ2 and from VMp,ϕ1 to VMq,ϕ2 for 1 < p < q <∞ and

1/p − 1/q = (α + β)/n. In all cases the conditions for the boundedness of the operator IA,mΩ,α

is given in terms of Zygmund-type integral inequalities on (ϕ1, ϕ2), which do not assume any
assumption on monotonicity of ϕ1(x, r), ϕ2(x, r) in r.
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1 Introduction and results

It is well known that the fractional integrals and their commutators play an important role in
harmonic analysis and PDE, where the definition of fractional integral operator with rough kernel
Iα is

Iαf(x) =

∫
Rn

f(y)

|x− y|n−α
dy, 0 < α < n. (1.1)

By the famous Hardy-Littlewood-Sobolev imbedding theorem (see [33]), we see that Iα maps
Lp(Rn) continuously into Lp(Rn) with 1/p− 1/q = α/n and 1 < p < n/α.

Let γ = (γ1, γ2, . . . , γn), and γi (i = 1, 2, . . . , n) be nonnegative integers. Denote |γ| =
∑n
i=1 γi

and

γ! = γ1!γ2! . . . γn!, xγ = xγ11 x
γ2
2 . . . xγnn ,

Dγ =
∂|γ|

∂γ1x1 ∂γ2x2 . . . ∂γnxn
.

Suppose that Ω ∈ Ls(Sn−1) (s > 1) is homogeneous of degree zero on Rn with zero means value
on Sn−1, A is a function defined on Rn. Following [5], the rough fractional multilinear integral

operator IA,mΩ,α , is defined by

IA,mΩ,α f(x) =

∫
Rn

Rm(A;x, y)

|x− y|n−α+m−1
Ω(x− y)f(y)dy, (1.2)
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where 0 < α < n, and Rm(A;x, y) is the m-th remainder of Taylor series of A at x about y. More
precisely,

Rm(A;x, y) = A(x)−
∑
|γ|<m

1

γ!
DγA(y)(x− y)γ . (1.3)

Corresponding the rough fractional multilinear maximal operator MA,m
Ω,α , is defined by

MA,m
Ω,α f(x) = sup

r>0

1

rn−α+m−1

∫
B(x,r)

|Rm(A;x, y)|
|x− y|n−α+m−1

|Ω(x− y)| |f(y)|dy. (1.4)

When m = 1, then IAΩ,α ≡ IA,1Ω,α is just the commutator of the fractional integral IΩ,αf(x) with
function A,

IAΩ,αf(x) =

∫
Rn

Ω(x− y)

|x− y|n−α
(A(x)−A(y))f(y)dy

= A(x)IΩ,αf(x)− IΩ,α(Af)(x) ≡ [A, IΩ,α]f(x),

where

IΩ,αf(x) =

∫
Rn

Ω(x− y)

|x− y|n−α
f(y)dy

and MA
Ω,α ≡M

A,1
Ω,α is just the fractional maximal commutator of MΩ,α with function A,

MA
Ω,αf(x) = sup

r>0

1

rn−α

∫
B(x,r)

|A(x)−A(y)|
|x− y|n−α

|Ω(x− y)| |f(y)|dy.

When m ≥ 2, IA,mΩ,α is a non-trivial generalization of the above commutator [A, IΩ,α].
Since the commutator has a close relation with partial differential equations and pseudo-differential

operator, multilinear operator has been receiving more widely attention.
For β > 0, the homogeneous Lipschitz space Λ̇β(Rn) is the space of functions f , such that

‖f‖Λ̇β = sup
x,h∈Rn,h6=0

∣∣∣∆[β]+1
h f(x)

∣∣∣
|h|β

<∞,

where ∆1
hf(x) = f(x+ h)− f(x), ∆k+1

h f(x) = ∆k
hf(x+ h)−∆k

hf(x), k ≥ 1. It is easy to see that

if Λ̇β(Rn) and 0 < β < 1, then for any x, y ∈ Rn,

|f(x)− f(y)| ≤ |x− y|β ‖f‖Λ̇β .

Ding [5] proved the weighted (Lp, Lq)-boundedness of IA,mΩ,α , when DγA ∈ Lr(Rn), 1 < r ≤ ∞,

|γ| = m−1. Wu and Yang [36] proved that if DγA ∈ BMO(Rn), |γ| = m−1, then IA,mΩ,α is bounded
on Lp(Rn).
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On the other hand, in 1995, Paluszynski [24] studied the commutators generated by the Riesz
potential and a Lipschitz function and gave some characterizations of the Besov spaces. Motivated
by [24], it is natural to ask that what kinds of properties IA,mΩ,α has when DγA belongs to the
Lipschitz class. In [19] the authors was prove that if 1 ≤ p < q < ∞ and 1/p − 1/q = (α + β)/n,

then the operator IA,mΩ,α is bounded from Lp(Rn) into Lq(Rn) for p > 1 and from Lp(Rn) into
WLq(Rn) for p ≥ 1.

In [19], Lu and Zhang proved the following result.
Theorem A. Let 0 < α < n, 0 < β < 1, α+ β < n, 1 < p < n/(α+ β), 1/p− 1/q = (α+ β)/n

and Ω ∈ Ls(Sn−1), s > n/(n − α − β) is homogeneous of degree zero on Rn. Assume that A has
derivatives of order m − 1 in Λ̇β(Rn). Then there exists a constant C, independent of A and f ,
such that

‖MA,m
Ω,α f‖Lq(Rn) . ‖IA,mΩ,α f‖Lq(Rn) .

∑
|γ|=m−1

‖DγA‖Λ̇β‖f‖Lp(Rn)

for p > 1 and

‖MA,m
Ω,α f‖WLq(Rn) . ‖IA,mΩ,α f‖WLq(Rn) .

∑
|γ|=m−1

‖DγA‖Λ̇β‖f‖Lp(Rn)

for p ≥ 1. Here and in the sequel, we shall use the symbol A . B to indicate that there exists a
universal positive constant C, independent of all important parameters, such that A ≤ CB. A ≈ B
means that A . B and B . A.

The classical Morrey spaces were originally introduced by Morrey in [21] to study the local
behavior of solutions to second order elliptic partial differential equations. For the properties and
applications of classical Morrey spaces, we refer the readers to [3, 8, 9, 13, 21, 23, 26, 27, 28, 30].
The first author, Mizuhara and Nakai [11, 20, 22] introduced generalized Morrey spaces Mp,ϕ(Rn)
(see, also [12, 13, 31]). In [11, 13, 20, 22], the boundedness of the classical operators and their
commutators in spaces Mp,ϕ was also studied, see also [2, 6, 14, 32].

For brevity, in the sequel we use the notations

Ap,ϕ(f ;x, r) := r−n/p ϕ(x, r)−1‖f‖Lp(B(x,r))

and
AWΦ,ϕ(f ;x, r) := r−n/p ϕ(x, r)−1‖f‖WLp(B(x,r)).

Definition 1.1. Let ϕ(x, r) be a positive measurable function on Rn× (0,∞) and 1 ≤ p <∞. For

any fixed x0 ∈ Rn we denote by LM
{x0}
p,ϕ = LM

{x0}
p,ϕ (Rn) the local generalized Morrey space, the

space of all functions f ∈ Llocp (Rn) with finite norm

‖f‖
LM

{x0}
p,ϕ

= sup
r>0

Ap,ϕ(f ;x0, r).

Also WLM
{x0}
p,ϕ = WLM

{x0}
p,ϕ (Rn) we denote the weak local generalized Morrey space, the space of

all functions f ∈WLlocp (Rn) with

‖f‖
WLM

{x0}
p,ϕ

= sup
r>0

AWp,ϕ(f ;x0, r) <∞.
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The local spaces LM
{x0}
p,ϕ (Rn) and WLM

{x0}
p,ϕ (Rn) are Banach spaces with respect to the norm

‖f‖
LM

{x0}
p,ϕ

= sup
r>0

Ap,ϕ(f ;x0, r), ‖f‖
WLM

{x0}
p,ϕ

= sup
r>0

AWp,ϕ(f ;x0, r),

respectively.

Remark 1.2. (i) When ϕ(x, r) = r(λ−n)/p, LM
{x0}
p,ϕ (Rn) is the local (central) Morrey space

LM
{0}
p,λ (Rn) studied in [1];

(ii) The local generalized Morrey space LM
{x0}
p,ϕ (Rn) were introduced by V.S. Guliyev in [11],

see also [12, 15, 18] etc.

Definition 1.3. The vanishing generalized Morrey space VMp,ϕ(Rn) is defined as the spaces of
functions f ∈Mp,ϕ(Rn) such that

lim
r→0

sup
x∈Rn

Ap,ϕ(f ;x, r) = 0. (1.5)

The vanishing weak generalized Morrey space VWMp,ϕ(Rn) is defined as the spaces of functions
f ∈WMp,ϕ(Rn) such that

lim
r→0

sup
x∈Rn

AWp,ϕ(f ;x, r) = 0.

The vanishing spaces VMp,ϕ(Rn) and VWMp,ϕ(Rn) are Banach spaces with respect to the
norm

‖f‖VMp,ϕ
≡ ‖f‖Mp,ϕ

= sup
x∈Rn,r>0

Ap,ϕ(f ;x, r),

‖f‖VWMp,ϕ
≡ ‖f‖WMp,ϕ

= sup
x∈Rn,r>0

AW,p,ϕ(f ;x, r),

respectively.
In the case ϕ(x, r) = r(λ−n)/p VMp,ϕ(Rn) is the vanishing Morrey space VMp,λ introduced in

[34], where applications to PDE were considered.
We refer to [17, 26, 29] for some properties of vanishing generalized Morrey spaces.
In [16], V.S. Guliyev proved the following result.
Theorem B. Let x0 ∈ Rn and Ω ∈ Ls(Sn−1), 1 < s ≤ ∞ is homogeneous of degree zero on Rn.

Let also 0 < α < n, 1 ≤ p < n/α, 1/p − 1/q = α/n, s′ ≤ p or q < s, and ϕ1 ∈ Ωp,loc, ϕ2 ∈ Ωq,loc

satisfy the condition ∫ ∞
r

ess sup
t<τ<∞

ϕ1(x0, τ)τ
n
p

t
n
q

dt

t
≤ C ϕ2(x0, r), (1.6)

where C does not depend on r. Then the operator IΩ,α is bounded from LM
{x0}
p,ϕ1 (Rn) to LM

{x0}
q,ϕ2 (Rn).

Corollary A. Let Ω ∈ Ls(Sn−1), 1 < s ≤ ∞ is homogeneous of degree zero on Rn. Let also
0 < α < n, 1 ≤ p < n/α, 1/p − 1/q = α/n, s′ ≤ p or q < s, and ϕ1 ∈ Ωp, ϕ2 ∈ Ωq satisfy the
condition ∫ ∞

r

ess sup
t<τ<∞

ϕ1(x, τ)τ
n
p

t
n
q

dt

t
≤ C ϕ2(x, r), (1.7)
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where C does not depend on x and r. Then the operator IΩ,α is bounded from Mp,ϕ1(Rn) to
Mq,ϕ2

(Rn).

In this paper, we consider the boundedness of the fractional multilinear operators IA,mΩ,α with

rough kernels Ω ∈ Ls(Sn−1), s > n/(n − α) on the local generalized Morrey spaces LM
{x0}
p,ϕ , gen-

eralized Morrey spaces Mp,ϕ and vanishing generalized Morrey spaces VMp,ϕ, where the functions

A belong to homogeneous Lipschitz space Λ̇β , 0 < β < 1.
Our main results can be formulated as follows.

Theorem 1.4. Let x0 ∈ Rn and Ω ∈ Ls(Sn−1), s > n/(n− α− β) is homogeneous of degree zero
on Rn. Let also 0 < α < n, 0 < β < 1, α+ β < n, 1 ≤ p < n/(α+ β) and 1/p− 1/q = (α+ β)/n.
Assume that A has derivatives of order m − 1 in Λ̇β(Rn) and ϕ1 ∈ Ωp,loc, ϕ2 ∈ Ωq,loc satisfy the

condition (1.6) Then the operator IA,mΩ,α is bounded from LM
{x0}
p,ϕ1 (Rn) to LM

{x0}
q,ϕ2 (Rn) for p > 1

and from LM
{x0}
1,ϕ1

(Rn) to WLM
{x0}

n
n−α−β ,ϕ2

(Rn). Moreover, for p > 1

‖IA,mΩ,α f‖LM{x0}q,ϕ2

.
( ∑
|γ|=m−1

‖DγA‖Λ̇β
)
‖f‖

LM
{x0}
p,ϕ1

and for p = 1

‖IA,mΩ,α f‖WLM
{x0}

n
n−α−β ,ϕ2

.
( ∑
|γ|=m−1

‖DγA‖Λ̇β
)
‖f‖

LM
{x0}
1,ϕ1

.

Corollary 1.5. Let Ω ∈ Ls(Sn−1), s > n/(n − α − β) is homogeneous of degree zero on Rn. Let
also 0 < α < n, 0 < β < 1, α + β < n, 1 ≤ p < n/(α + β) and 1/p − 1/q = (α + β)/n. Assume
that A has derivatives of order m− 1 in Λ̇β(Rn) and ϕ1 ∈ Ωp, ϕ2 ∈ Ωq satisfy the condition (1.7)

Then the operator IA,mΩ,α is bounded from Mp,ϕ1
(Rn) to Mq,ϕ2

(Rn) for p > 1 and from M1,ϕ1
(Rn)

to WM n
n−α−β ,ϕ2

(Rn). Moreover, for p > 1

‖IA,mΩ,α f‖Mq,ϕ2
.
( ∑
|γ|=m−1

‖DγA‖Λ̇β
)
‖f‖Mp,ϕ1

and for p = 1

‖IA,mΩ,α f‖WM n
n−α−β ,ϕ2

.
( ∑
|γ|=m−1

‖DγA‖Λ̇β
)
‖f‖M1,ϕ1

.

Theorem 1.6. Let Ω ∈ Ls(Sn−1), s > n/(n − α − β) is homogeneous of degree zero on Rn. Let
also 0 < α < n, 0 < β < 1, α+ β < n, 1 ≤ p < n/(α+ β) and 1/p− 1/q = (α+ β)/n. Assume that
A has derivatives of order m− 1 in Λ̇β(Rn) and ϕ1 ∈ Ωp,1, ϕ2 ∈ Ωq,1 satisfies the conditions

cδ :=

∫ ∞
δ

sup
x∈Rn

ϕ1(x, t)
dt

t
<∞

for every δ > 0, and ∫ ∞
r

ϕ1(x, t)

t1−α−β
dt ≤ C0ϕ2(x, r), (1.8)
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where C0 does not depend on x ∈ Rn and r > 0. Then the operator IA,mΩ,α is bounded from VMp,ϕ1

to VMq,ϕ2
for p > 1 and from VM1,ϕ1

to WVM n
n−α−β ,ϕ2

.

2 Some preliminaries

To prove the theorems, we need auxiliary results. The first one is the following characterizations of
Lipschitz space, which is due to DeVore and Sharply [10].

Lemma 2.1. Let 0 < β < 1. Then

‖f‖Λ̇β(Rn) ≈ sup
B

1

|B|1+β/n

∫
B

|f(x)− fB |dx.

Below we present some conclusions about Rm(A;x, y).

Lemma 2.2. [25] Suppose A be a function on Rn with the m-th derivatives in Lloc
q (Rn), q > n.

Then

|Rm(A;x, y)| . |x− y|m
∑
|γ|=m

(
1

B(x, 5
√
n|x− y|)

∫
B(x,5

√
n|x−y|)

|DγA(z)|dz

)1/q

.

We state the following important lemma.

Lemma 2.3. [35] Let Ω ∈ Ls(Sn−1), s > n/(n−α− β) is homogeneous of degree zero on Rn. Let
also 0 < α < n, 0 < β < 1, α+ β < n and DγA ∈ Λ̇β(Rn). Then∣∣∣IA,mΩ,α f(x)

∣∣∣ . ( ∑
|γ|=m−1

∥∥∥DγA
∥∥∥

Λ̇β

)
I|Ω|,α+β(|f |)(x). (2.1)

Finally, we present a relationship between essential supremum and essential infimum.

Lemma 2.4. [4, 37] Let f be a real-valued nonnegative function and measurable on E. Then(
ess inf
x∈E

f(x)
)−1

= ess sup
x∈E

1

f(x)
.

It is natural, first of all, to find conditions ensuring that the spaces LM
{x0}
p,ϕ and Mp,ϕ are

nontrivial, that is consist not only of functions equivalent to 0 on Rn.

Lemma 2.5. Let x0 ∈ Rn, ϕ(x, r) be a positive measurable function on Rn×(0,∞) and 1 ≤ p <∞.
If

sup
t<r<∞

r−
n
p

ϕ(x0, r)
=∞ for some t > 0, (2.2)

then LM
{x0}
p,ϕ (Rn) = Θ, where Θ is the set of all functions equivalent to 0 on Rn.
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Proof. Let (2.2) be satisfied and f be not equivalent to zero. Then ‖f‖Lp(B(x0,t))
> 0, hence

‖f‖
LM

{x0}
p,ϕ
≥ sup
t<r<∞

ϕ(x0, r)
−1r−

n
p ‖f‖Lp(B(x0,r))

≥ ‖f‖Lp(B(x0,t)) sup
t<r<∞

ϕ(x0, r)
−1r−

n
p .

Therefore ‖f‖
LM

{x0}
p,ϕ

=∞. q.e.d.

Remark 2.6. We denote by Ωp,loc the sets of all positive measurable functions ϕ on Rn × (0,∞)
such that for all t > 0,

sup
x∈Rn

∥∥∥ r−
n
p

ϕ(x, r)

∥∥∥
L∞(t,∞)

<∞.

In what follows, keeping in mind Lemma 2.5, for the non-triviality of the space LM
{x0}
p,ϕ (Rn) we

always assume that ϕ ∈ Ωp,loc.

Lemma 2.7. [7] Let ϕ(x, r) be a positive measurable function on Rn × (0,∞) and 1 ≤ p <∞.

(i) If

sup
t<r<∞

r−
n
p

ϕ(x, r)
=∞ for some t > 0 and for all x ∈ Rn, (2.3)

then Mp,ϕ(Rn) = Θ.

(ii) If

sup
0<r<τ

ϕ(x, r)−1 =∞ for some τ > 0 and for all x ∈ Rn, (2.4)

then Mp,ϕ(Rn) = Θ.

Remark 2.8. We denote by Ωp the sets of all positive measurable functions ϕ on Rn× (0,∞) such
that for all t > 0,

sup
x∈Rn

∥∥∥ r−
n
p

ϕ(x, r)

∥∥∥
L∞(t,∞)

<∞, and sup
x∈Rn

∥∥∥ϕ(x, r)−1
∥∥∥
L∞(0,t)

<∞,

respectively. In what follows, keeping in mind Lemma 2.7, for the non-triviality of the space
Mp,ϕ(Rn) we always assume that ϕ ∈ Ωp.

Remark 2.9. We denote by Ωp,1 the sets of all positive measurable functions ϕ on Rn × (0,∞)
such that

inf
x∈Rn

inf
r>δ

ϕ(x, r) > 0, for some δ > 0, (2.5)

and

lim
r→0

rn/p

ϕ(x, r)
= 0,

For the non-triviality of the space VMp,ϕ(Rn) we always assume that
ϕ ∈ Ωp,1.
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3 Guliyev type local estimates

In the following theorem we get Guliyev type local estimate (see, for example, [11, 13] ) for the

operator IA,mΩ,α .

Theorem 3.1. Let x0 ∈ Rn and Ω ∈ Ls(Sn−1), s > n/(n− α− β) is homogeneous of degree zero
on Rn. Let also 0 < α < n, 0 < β < 1, α+ β < n, 1 < p < n/(α+ β) and 1/p− 1/q = (α+ β)/n.
Assume that A has derivatives of order m− 1 in Λ̇β(Rn), then the inequality

‖IA,mΩ,α f‖Lq(B(x0,r)) ≤ C
( ∑
|γ|=m−1

‖DγA‖Λ̇β
)
r
n
q

∫ ∞
2r

‖f‖Lp(B(x0,t)) t
−nq−1 dt (3.1)

holds for any ball B(x0, r) and for all f ∈ Lloc
p (Rn), p > 1. Moreover, for p = 1 the inequality

‖IA,mΩ,α f‖WLq(B(x0,r)) ≤ C
( ∑
|γ|=m−1

‖DγA‖Λ̇β
)
rn
∫ ∞

2r

‖f‖Lp(B(x0,t)) t
−n−1 dt (3.2)

holds for any ball B(x0, r) and for all f ∈ Lloc
1 (Rn), where the constant C independent of f , r and

x0.

Proof. We write f as f = f1 +f2, where f1(y) = f(y)χB(x0,2r)
(y), χB(x0,2r) denotes the characteristic

function of B(x0, 2r). Then

‖IA,mΩ,α f‖Lq(B(x0,r)) ≤ ‖I
A,m
Ω,α f1‖Lq(B(x0,r)) + ‖IA,mΩ,α f2‖Lq(B(x0,r)).

Since f1 ∈ Lp(Rn), by the boundedness of TAΩ,α from Lp(Rn) to Lq(Rn) (Theorem A) we get

‖IA,mΩ,α f1‖Lq(B(x0,r)) ≤ ‖I
A,m
Ω,α f1‖Lq(Rn)

.
( ∑
|γ|=m−1

‖DγA‖Λ̇β
)
‖f1‖Lp(Rn)

=
( ∑
|γ|=m−1

‖DγA‖Λ̇β
)
‖f‖Lp(B(x0,2r)).

Moreover, the following inequality

‖f‖Lp(B(x0,2r)) . r
n
q ‖f‖Lp(B(x0,2r))

∫ ∞
2r

t−
n
q−1dt

≤ r
n
q

∫ ∞
2r

‖f‖Lp(B(x0,t)) t
−nq−1dt (3.3)

is valid. Thus

‖IA,mΩ,α f1‖Lq(B(x0,r)) .
( ∑
|γ|=m−1

‖DγA‖Λ̇β
)
r
n
q

∫ ∞
2r

‖f‖Lp(B(x0,t)) t
−nq−1dt. (3.4)
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By Lemma 2.3 we get∣∣∣IA,mΩ,α f2(x)
∣∣∣ . ( ∑

|γ|=m−1

∥∥∥DγA
∥∥∥

Λ̇β

)
I|Ω|,α+β(|f2|)(x)

.
( ∑
|γ|=m−1

∥∥∥DγA
∥∥∥

Λ̇β

) ∫
{(B(x0,2r))

|Ω(x− y)|
|x− y|n−α−β

|f(y)| dy.

To estimate ‖IA,mΩ,α f2‖Lp(B(x0,r)), obverse that x ∈ B, y ∈ (2B)c implies |x− y| ≈ |x0− y|. Then
we have

sup
x∈B
|IA,mΩ,α (f2)(x)| .

( ∑
|γ|=m−1

∥∥∥DγA
∥∥∥

Λ̇β

) ∫
{(2B)

|Ω(x− y)| |f(y)|
|x0 − y|n−α−β

.

By Fubini’s theorem we have∫
{(2B)

|f(y)||Ω(x− y)|
|x0 − y|n−α−β

dy ≈
∫

{(2B)

|f(y)||Ω(x− y)|
∫ ∞
|x0−y|

dt

tn+1−α−β dy

≈
∫ ∞

2r

∫
2r≤|x0−y|≤t

|f(y)||Ω(x− y)|dy dt

tn+1−α−β

.
∫ ∞

2r

∫
B(x0,t)

|f(y)||Ω(x− y)|dy dt

tn+1−α−β .

Applying Hölder’s inequality, we get∫
{(2B)

|f(y)||Ω(x− y)|
|x0 − y|n−α−β

dy

.
∫ ∞

2r

‖f‖Lp(B(x0,t)) ‖Ω(· − y)‖Ls(B(x0,r)) |B(x0, t)|1−
1
p−

1
s

dt

tn+1−α−β

.
∫ ∞

2r

‖f‖Lp(B(x0,t)) t
−nq−1 dt.

(3.5)

Moreover, for all p ∈ [1,∞) the inequality

‖IA,mΩ,α f2‖Lq(B) .
( ∑
|γ|=m−1

∥∥∥DγA
∥∥∥

Λ̇β

)
r
n
q

∫ ∞
2r

‖f‖Lp(B(x0,t)) t
−nq−1 dt. (3.6)

is valid. Thus, combining the estimates of (3.4) and (3.6), we have

‖IA,mΩ,α f‖Lq(B) .
( ∑
|γ|=m−1

∥∥∥DγA
∥∥∥

Λ̇β

)
r
n
q

∫ ∞
2r

‖f‖Lp(B(x0,t)) t
−nq−1 dt.
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Let p = 1 < q < s ≤ ∞. From the weak (1, q) boundedness of IΩ,α and (3.3) it follows that:

‖IA,mΩ,α f1‖WLq(B) ≤ ‖IA,mΩ,α f1‖WLq(Rn)

.
( ∑
|γ|=m−1

∥∥∥DγA
∥∥∥

Λ̇β

)
‖f1‖L1(Rn)

=
( ∑
|γ|=m−1

∥∥∥DγA
∥∥∥

Λ̇β

)
‖f‖L1(2B) (3.7)

.
( ∑
|γ|=m−1

∥∥∥DγA
∥∥∥

Λ̇β

)
r
n
q

∫ ∞
2r

‖f‖L1(B(x0,t)) t
−nq−1 dt.

Then from (3.6) and (3.7) we get the inequality (3.2).
This completes the proof of Theorem 3.1. q.e.d.

4 Proof of Theorem 1.4

Since f ∈ LM
{x0}
p,ϕ1 (Rn), then by Lemma 2.4 and the non decreasing, respect to t, of the norm

‖f‖Lp(B(x0,t)), we get

‖f‖Lp(B(x0,t))

ess inf
t<τ<∞

ϕ1(x0, τ)τ
n
p
≤ ess sup

t<τ<∞

‖f‖Lp(B(x0,t))

ϕ1(x0, τ)τ
n
p

≤ sup
τ>0

‖f‖Lp(B(x0,τ))

ϕ1(x0, τ)τ
n
p
≤ ‖f‖

LM
{x0}
p,ϕ1

.

Since (ϕ1, ϕ2) satisfies (1.6), we have∫ ∞
r

‖f‖Lp(B(x0,t))t
−nq−1 dt

=

∫ ∞
r

‖f‖Lp(B(x0,t))

ess inf
t<τ<∞

ϕ1(x0, τ)τ
n
p

ess inf
t<τ<∞

ϕ1(x0, τ)τ
n
p

t
n
q

dt

t

≤ ‖f‖
LM

{x0}
p,ϕ1

∫ ∞
r

ess inf
t<τ<∞

ϕ1(x0, τ)τ
n
p

t
n
q

dt

t

. ϕ2(x0, t) ‖f‖LM{x0}p,ϕ1

.
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Then by (3.1) we get

‖IA,mΩ,α f‖LM{x0}q,ϕ2

= sup
t>0

1

ϕ2(x0, t)

( 1

|B(x0, t)|

∫
B(x0,t)

|IA,mΩ,α f(y)|qdy
)1/q

.
( ∑
|γ|=m−1

‖DγA‖Λ̇β
)

sup
t>0

1

ϕ2(x0, t)

∫ ∞
r

‖f‖Lp(B(x0,t))t
−nq−1 dt

.
( ∑
|γ|=m−1

‖DγA‖Λ̇β
)
‖f‖

LM
{x0}
p,ϕ1

.

5 Proof of Theorem 1.6

The statement is derived from the estimate (3.1). The estimation of the norm of the operator, that
is, the boundedness in the non-vanishing space, immediately follows from by Corollary 1.5. So we
only have to prove that

lim
r→0

sup
x∈Rn

Aα,Vp,ϕ1
(f ;x, r) = 0 ⇒ lim

r→0
sup
x∈Rn

Aα,Vq,ϕ2
(IA,mΩ,α f ;x, r) = 0 (5.1)

and

lim
r→0

sup
x∈Rn

Aα,V1,ϕ1
(f ;x, r) = 0 ⇒ lim

r→0
sup
x∈Rn

AW,α,Vn/(n−β),ϕ2
(IA,mΩ,α f ;x, r) = 0. (5.2)

To show that sup
x∈Rn

ϕ2(x, r)−1r−n/p‖IA,mΩ,α f‖Lq(B(x,r)) < ε for small r, we split the right-hand side

of (3.1): (
1 +

r

ρ(x)

)α
ϕ2(x, r)−1r−n/p‖IA,mΩ,α f‖Lq(B(x,r)) ≤ C[Iδ0(x, r) + Jδ0(x, r)], (5.3)

where δ0 > 0 (we may take δ0 > 1), and

Iδ0(x, r) :=

(
1 + r

ρ(x)

)α
ϕ2(x, r)

∫ δ0

r

t−
n
q−1‖f‖Lp(B(x,t))dt

and

Jδ0(x, r) :=

(
1 + r

ρ(x)

)α
ϕ2(x, r)

∫ ∞
δ0

t−
n
q−1‖f‖Lp(B(x,t))dt

and it is supposed that r < δ0. We use the fact that f ∈ VMα,V
p,ϕ1

(Rn) and choose any fixed δ0 > 0
such that

sup
x∈Rn

(
1 +

t

ρ(x)

)α
ϕ1(x, t)−1t−n/p‖f‖Lp(B(x,t)) <

ε

2CC0
,
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where C and C0 are constants from (1.8) and (5.3). This allows to estimate the first term uniformly
in r ∈ (0, δ0) :

sup
x∈Rn

CIδ0(x, r) <
ε

2
, 0 < r < δ0.

The estimation of the second term now my be made already by the choice of r sufficiently small.
Indeed, thanks to the condition (2.5) we have

Jδ0(x, r) ≤ cσ0

(
1 + r

ρ(x)

)α
ϕ1(x, r)

‖f‖VMα,V
p,ϕ1

,

where cσ0
is the constant from (1.5). Then, by (2.5) it suffices to choose r small enough such that

sup
x∈Rn

(
1 + r

ρ(x)

)α
ϕ2(x, r)

≤ ε

2cσ0‖f‖VMα,V
p,ϕ1

,

which completes the proof of (5.1).
The proof of (5.2) is similar to the proof of (5.1).
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